Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Syst Biol ; 17(9): e10105, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34528760

RESUMO

Tumor cell heterogeneity is a crucial characteristic of malignant brain tumors and underpins phenomena such as therapy resistance and tumor recurrence. Advances in single-cell analysis have enabled the delineation of distinct cellular states of brain tumor cells, but the time-dependent changes in such states remain poorly understood. Here, we construct quantitative models of the time-dependent transcriptional variation of patient-derived glioblastoma (GBM) cells. We build the models by sampling and profiling barcoded GBM cells and their progeny over the course of 3 weeks and by fitting a mathematical model to estimate changes in GBM cell states and their growth rates. Our model suggests a hierarchical yet plastic organization of GBM, where the rates and patterns of cell state switching are partly patient-specific. Therapeutic interventions produce complex dynamic effects, including inhibition of specific states and altered differentiation. Our method provides a general strategy to uncover time-dependent changes in cancer cells and offers a way to evaluate and predict how therapy affects cell state composition.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Glioblastoma/genética , Humanos , Recidiva Local de Neoplasia , Análise de Célula Única
2.
Front Genet ; 11: 381, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32362913

RESUMO

Glioblastoma (GBM) is an aggressive type of brain cancer with a poor prognosis for affected patients. The current line of treatment only gives the patients a survival time of on average 15 months. In this work, we use genome-scale metabolic models (GEMs) together with other systems biology tools to examine the global transcriptomics-data of GBM-patients obtained from The Cancer Genome Atlas (TCGA). We reveal the molecular mechanisms underlying GBM and identify potential therapeutic targets for effective treatment of patients. The work presented consists of two main parts. The first part stratifies the patients into two groups, high and low survival, and compares their gene expression. The second part uses GBM and healthy brain tissue GEMs to simulate gene knockout in a GBM cell model to find potential therapeutic targets and predict their side effect in healthy brain tissue. We (1) find that genes upregulated in the patients with low survival are linked to various stages of the glioma invasion process, and (2) identify five essential genes for GBM, whose inhibition is non-toxic to healthy brain tissue, therefore promising to investigate further as therapeutic targets.

3.
Nat Commun ; 11(1): 71, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31900415

RESUMO

Despite advances in the molecular exploration of paediatric cancers, approximately 50% of children with high-risk neuroblastoma lack effective treatment. To identify therapeutic options for this group of high-risk patients, we combine predictive data mining with experimental evaluation in patient-derived xenograft cells. Our proposed algorithm, TargetTranslator, integrates data from tumour biobanks, pharmacological databases, and cellular networks to predict how targeted interventions affect mRNA signatures associated with high patient risk or disease processes. We find more than 80 targets to be associated with neuroblastoma risk and differentiation signatures. Selected targets are evaluated in cell lines derived from high-risk patients to demonstrate reversal of risk signatures and malignant phenotypes. Using neuroblastoma xenograft models, we establish CNR2 and MAPK8 as promising candidates for the treatment of high-risk neuroblastoma. We expect that our method, available as a public tool (targettranslator.org), will enhance and expedite the discovery of risk-associated targets for paediatric and adult cancers.


Assuntos
Antineoplásicos/administração & dosagem , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Animais , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Masculino , Camundongos , Camundongos Nus , Proteína Quinase 8 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 8 Ativada por Mitógeno/genética , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Neuroblastoma/metabolismo , Receptor CB2 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/genética , Receptor CB2 de Canabinoide/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
4.
Front Psychol ; 6: 1842, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26733114

RESUMO

This paper investigates aspects of the noun phrase from a Scandinavian heritage language perspective, with an emphasis on noun phrase-internal gender agreement and noun declension. Our results are somewhat surprising compared with earlier research: We find that noun phrase-internal agreement for the most part is rather stable. To the extent that we find attrition, it affects agreement in the noun phrase, but not the declension of the noun. We discuss whether this means that gender is lost and has been reduced to a pure declension class, or whether gender is retained. We argue that gender is actually retained in these heritage speakers. One argument for this is that the speakers who lack agreement in complex noun phrases, have agreement intact in simpler phrases. We have thus found that the complexity of the noun phrase is crucial for some speakers. However, among the heritage speakers we also find considerable inter-individual variation, and different speakers can have partly different systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...